Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(2): e1010922, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36854032

RESUMO

Multiple coronaviruses including MERS-CoV causing Middle East Respiratory Syndrome, SARS-CoV causing SARS, and SARS-CoV-2 causing COVID-19, use a mechanism known as -1 programmed ribosomal frameshifting (-1 PRF) to replicate. SARS-CoV-2 possesses a unique RNA pseudoknotted structure that stimulates -1 PRF. Targeting -1 PRF in SARS-CoV-2 to impair viral replication can improve patients' prognoses. Crucial to developing these therapies is understanding the structure of the SARS-CoV-2 -1 PRF pseudoknot. Our goal is to expand knowledge of -1 PRF structural conformations. Following a structural alignment approach, we identify similarities in -1 PRF pseudoknots of SARS-CoV-2, SARS-CoV, and MERS-CoV. We provide in-depth analysis of the SARS-CoV-2 and MERS-CoV -1 PRF pseudoknots, including reference and noteworthy mutated sequences. To better understand the impact of mutations, we provide insight on -1 PRF pseudoknot sequence mutations and their effect on resulting structures. We introduce Shapify, a novel algorithm that given an RNA sequence incorporates structural reactivity (SHAPE) data and partial structure information to output an RNA secondary structure prediction within a biologically sound hierarchical folding approach. Shapify enhances our understanding of SARS-CoV-2 -1 PRF pseudoknot conformations by providing energetically favourable predictions that are relevant to structure-function and may correlate with -1 PRF efficiency. Applied to the SARS-CoV-2 -1 PRF pseudoknot, Shapify unveils previously unknown paths from initial stems to pseudoknotted structures. By contextualizing our work with available experimental data, our structure predictions motivate future RNA structure-function research and can aid 3-D modeling of pseudoknots.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , RNA Viral/genética , Conformação Molecular , Conformação de Ácido Nucleico
2.
Bioinformatics ; 34(22): 3849-3856, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29868872

RESUMO

Motivation: The computational prediction of RNA secondary structure by free energy minimization has become an important tool in RNA research. However in practice, energy minimization is mostly limited to pseudoknot-free structures or rather simple pseudoknots, not covering many biologically important structures such as kissing hairpins. Algorithms capable of predicting sufficiently complex pseudoknots (for sequences of length n) used to have extreme complexities, e.g. Pknots has O(n6) time and O(n4) space complexity. The algorithm CCJ dramatically improves the asymptotic run time for predicting complex pseudoknots (handling almost all relevant pseudoknots, while being slightly less general than Pknots), but this came at the cost of large constant factors in space and time, which strongly limited its practical application (∼200 bases already require 256 GB space). Results: We present a CCJ-type algorithm, Knotty, that handles the same comprehensive pseudoknot class of structures as CCJ with improved space complexity of Θ(n3+Z)-due to the applied technique of sparsification, the number of 'candidates', Z, appears to grow significantly slower than n4 on our benchmark set (which include pseudoknotted RNAs up to 400 nt). In terms of run time over this benchmark, Knotty clearly outperforms Pknots and the original CCJ implementation, CCJ 1.0; Knotty's space consumption fundamentally improves over CCJ 1.0, being on a par with the space-economic Pknots. By comparing to CCJ 2.0, our unsparsified Knotty variant, we demonstrate the isolated effect of sparsification. Moreover, Knotty employs the state-of-the-art energy model of 'HotKnots DP09', which results in superior prediction accuracy over Pknots. Availability and implementation: Our software is available at https://github.com/HosnaJabbari/Knotty. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
RNA/química , Software , Algoritmos , Conformação de Ácido Nucleico , Análise de Sequência de RNA
3.
PLoS One ; 13(4): e0194583, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29621250

RESUMO

MOTIVATION: RNA is a biopolymer with various applications inside the cell and in biotechnology. Structure of an RNA molecule mainly determines its function and is essential to guide nanostructure design. Since experimental structure determination is time-consuming and expensive, accurate computational prediction of RNA structure is of great importance. Prediction of RNA secondary structure is relatively simpler than its tertiary structure and provides information about its tertiary structure, therefore, RNA secondary structure prediction has received attention in the past decades. Numerous methods with different folding approaches have been developed for RNA secondary structure prediction. While methods for prediction of RNA pseudoknot-free structure (structures with no crossing base pairs) have greatly improved in terms of their accuracy, methods for prediction of RNA pseudoknotted secondary structure (structures with crossing base pairs) still have room for improvement. A long-standing question for improving the prediction accuracy of RNA pseudoknotted secondary structure is whether to focus on the prediction algorithm or the underlying energy model, as there is a trade-off on computational cost of the prediction algorithm versus the generality of the method. RESULTS: The aim of this work is to argue when comparing different methods for RNA pseudoknotted structure prediction, the combination of algorithm and energy model should be considered and a method should not be considered superior or inferior to others if they do not use the same scoring model. We demonstrate that while the folding approach is important in structure prediction, it is not the only important factor in prediction accuracy of a given method as the underlying energy model is also as of great value. Therefore we encourage researchers to pay particular attention in comparing methods with different energy models.


Assuntos
Modelos Moleculares , Conformação de Ácido Nucleico , RNA/química , Algoritmos , Bases de Dados Genéticas , Mutação , RNA/genética , RNA Bacteriano , RNA Ribossômico 5S/química , Reprodutibilidade dos Testes , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...